MT: A Toolset for Specifying and Analyzing Real-Time Systems

P. C. Clements, C. L. Heitmeyer, B. G. Labaw, A. T. Rose

Center for High Assurance Computing Systems
U.S. Naval Research Laboratory
Washington, DC 20375

Abstract

This paper introduces MT, a collection of integrated
tools for specifying and analyzing real-time systems using
the Modechart language. The toolset includes facilities for
creating and editing Modechart specifications. Users may
symbolically execute the specifications with an automatic
simulation tool to make sure that the specified behavior is
what was intended. They may also invoke a verifier that
uses model-checking to determine whether the specifica-
tions imply (satisfy) any of a broad class of safety asser-
tions. To illustrate the toolset’s capabilities as well as
several issues that arise when formal methods are applied
to real-world systems, the paper includes specifications and
analysis procedures for a software component taken from
an actual Navy real-time system.

1. Introduction
During the past decade, software engineering researchers
have devoted increased attention to formal methods --math-
ematical techniques useful in software development [10].
Recently, an international survey was conducted of 12 real-
world systems whose development involved formal meth-
ods [7]. The 12 systems spanned a wide range of applica-
tions, from safety-critical software, such as the FAA’s
TCAS, a collision avoidance system for commercial air-
craft [19]; to secure systems, such as Multinet Gateway, a
protocol-based service for secure datagram delivery [8]; to
hardware developments, such as the INMOS Transputer, a
family of 32-bit VLSI circuits [2]. The survey produced a
number of important conclusions about the nature of formal
methods usage in current software development [7]. Three
of the conclusions are relevant to this paper:
¢ A number of formal methods for representing and rea-
soning about behavioral requirements (e.g., the Z lan-
guage [21]) were found to have significant utility in the
development of real-world systems.
¢ Solid tool support for formal methods is practically non-
existent. The few tools available are weak and lack
robustness.
¢ Formal methods for representing and reasoning about

1052-8725/93 $03.00 © 1993 IEEE

12

timing requirements are lacking. Although researchers

have introduced a number of formal methods for speci-

fying and analyzing timing behavior, these have not yet
been used on real applications.

One reason that real-time formal methods are not being
used is that how they should be used is still unknown.
Moreover, although there is widespread agreement that
tools supporting the methods are needed, what form these
tools should take is also unknown. The purpose of this
paper is to introduce MT, a prototype development environ-
ment that addresses these issues. MT’s goals are to provide
an assessment of some of the more promising real-time
methods, to determine what tools are needed to support the
methods, and to explore how these tools can be used
together to develop real-time systems.

MT provides comprehensive support for applying formal
methods to the design and construction of real-time sys-
tems. The focus of MT is on hard real-time systems--sys-
tems that must, without exception, deliver results within
specified time intervals. MT supports the formal specifica-
tion of real-time behavior in a language called Modechart
[15] and formal analysis via formal verification, simulation,
and completeness and consistency checking. The objective
of formal analysis is to improve the correctness of the
Modechart specifications.

This paper introduces the tools that make up the MT
toolset! [12] and shows how the tools can be used to spec-
ify and analyze the behavior of a scheduler, a representative
example whose origins are in a real-world avionics system
[4]. The full specification of this example is presented in
(51

2. Formal methods for real-time systems

Several studies have shown that errors in specifications
are the most frequent types of software errors and the most
expensive to correct [3] [9]. By removing imprecision and
ambiguity and by reducing incompleteness and inconsis-

IMT is implemented in C and C++ for the UNIX/X-windows environ-
ment. Its run-time code is approximately 7.8MB.

tency, formal methods can significantly reduce the num-
ber of errors in specifications. Unlike informal
approaches to specifications, such as natural language
descriptions, expression of a software component’s
requirements in a formal language produces a precise,
unambiguous statement of what is needed. Also, in con-
trast to informal approaches, formal methods can orga-
nize the specification so that instances of inconsistency
and incompleteness are easier to detect.

An additional benefit of formal specifications is their
amenability to formal analysis. One form this analysis
can take is formal verification, which checks formal
specifications for critical application properties. In addi-
tion, the formal specifications can drive simulations of
the system. By running a series of simulations, each rep-
resenting one possible execution of the system, the user
can determine whether the system behavior represented
by the specifications is consistent with his intent. Thus,
simulation supports the validation of the specifications.

The formal method that underlies MT is the Mode-
chart language [15], a graphical language based on con-
current finite state diagrams, such as those used in
Statechart [11], and the concept of modes introduced by
references [14] [1] to simplify software requirements
specification. Modechart has a formal semantics defined
by Real-Time Logic (RTL), a form of first-order logic
[17]. Fundamental constructs of Modechart are modes,
mode transitions, actions, events, and timing con-
straints. Modes describe control information that
imposes structure on a system’s operation. An action,
one of which may be associated with each mode, is an
operation that is executed when a mode becomes active.
An event refers to a moment in time when something
occurs, such as a mode transition, a discrete change in
the system’s environment, the start or stop of an action,
or a variable taking on a new value. To specify timing
constraints on mode transitions, Modechart offers
delays (lower bounds on the time interval from mode
entry to mode exit) and deadlines (upper bounds).

MT includes a mechanical verifier [18] [22] devel-
oped at the University of Texas, one of the few mechan-
ical verifiers available for reasoning about real-time
systems [13]. The purpose of the verifier is to determine
whether a timing or behavioral assertion (expressed in
RTL) is logically implied by a set of Modechart specifi-
cations. Each assertion is a formal, logical statement of
a property that must hold for the specifications to be
considered correct.

3. Introduction to the toolset and the
demonstration problem
3.1 The application

To demonstrate the formal methods, we have focused

13

on the control system of a tactical air-launched missile
that detects ground targets based on their electromag-
netic emissions. In specifying the system, we have made
some simplifying assumptions [S]. The system is repre-
sentative of a modern, parallel, embedded system with
critical performance requirements. As such, it is a good
vehicle for our experiments. The missile software is
written in a high-level programming language (Pascal)
and uses a real-time operating system. The operating
system provides a scheduler and primitives that allow
synchronization of fixed-priority, preemptive tasks.
Mailboxes provide the mechanism for task communica-
tion. A task that requests the CPU may need to wait if
certain conditions apply. For example, writing to a full
mailbox may cause a task to wait until an item is
removed from the mailbox; reading an empty mailbox
may suspend a task until an item is added to the mail-
box. The system runs on several processors operating in
parallel; a copy of the operating system resides on each
Pprocessor.

In this application, we are using Modechart and the
MT environment to aid in design validation. A design
for the missile software has already been proposed (and
in fact, implemented). We are using MT to specify and
analyze the design to make sure that it satisfies chosen
timing and behavioral properties.

For demonstration purposes, we have selected a six-
task subset called Process_Signals for our study. This
subset represents the most complex part of the applica-
tion and provides a number of modeling challenges--
parallel processing, task synchronization, pipeline pro-
cessing, priority-based dynamic scheduling with task
suspension, data-dependent computation--that should
fruitfully test real-time technology. Process_Signals
analyzes the signals received by the missile’s sensors
and produces an azimuth/elevation pair that is transmit-
ted to the missile’s guidance system. It uses a pipeline
approach to target acquisition and tracking, thus allow-
ing two or more sets of sensor data to be processed
simultaneously.

Figure 1 illustrates our top-level Modechart decom-
position of the missile system. In the decomposition, the
system is described by four concurrent subsystems--the
environment, the operating system made up of the
scheduler and the task synchronization mechanism, the
Process_Signals subset, and the tasks outside of Pro-
cess_Signals. In Figure 1, the letters ‘P’ and ‘S’ denote
modes whose children operate in parallel or in series
with each other, respectively. The environment consists
of two concurrent subsystems: one signals environmen-
tal events to which Process_Signals must react, a sec-
ond removes from the environment’s mailbox events
sent by Process_Signals. The operating system consists

of two parts: one schedules the tasks based on task pri-
ority, and the other provides the task synchronization
(mailbox) mechanisms.

SCHEDULER

FIGURE 1. Highest-level Modechart model of
the missile system.

The remaining discussion focuses on a small subset
of the Modechart specification shown in Figure 1,
namely, the scheduler for one of the CPUs in the missile
and the five application tasks that run on it. These modes
are shown in white in the figure.

Figure 2 illustrates the structure of each of the five
Process_Signals tasks. To model processor allocation,
we introduce communication between the modes mod-
eling the tasks and the mode modeling the scheduler as
follows: A task T is modeled by a mode called T. If T
wishes to acquire the processor, a submode T.wait is
entered. Until that time, Tinit is active. If T is awarded
the processor while in T.wait, it enters T.work. If T is pre-
empted before it is through, the mode transitions from
T.work back to T.wait. If the task completes its work, the
mode transitions to T.done, and then back to T.init where
it waits for the next time to be activated. Task T is
awarded the CPU, and may begin work, at the moment
that the Scheduler submode called T.awarded_cpu is
entered. The scheduler chooses a task based on priorities
among all tasks whose modes are currently in their wait
state. One time unit after entering the appropriate
T_awarded_cpu mode, the Scheduler transitions to
T _has_cpu, where it remains until T is preempted or
relinquishes the cpu?.

In our example, each task requests the CPU a fixed

14

amount of time after it last finishes its work; the time
varies for each task. Any modeling of the task’s func-
tionality would occur inside T.work, but since we are
only modeling processor allocation, the work mode is
empty. A task voluntarily relinquishes the CPU when it
finishes its work, which occurs after a fixed interval of
uninterrupted CPU time. A task that is preempted before
completion starts from the beginning when it next gets
the CPU; this models ‘“start-over” pre-emption, as
opposed to the more usual resumptive pre-emption.

FIGURE 2. iInternal structure of a mode that
models a task. Entry into the “wait” mode
cé%rbsmutes a request to the scheduler for the

3.2 Creating and editing specifications

MT is a window-based toolset that supports the cre-
ation, editing, and layout of a set of Modechart specifi-
cations. Figures 3 and 4 show two windows that appear
when the user names a set of specifications he wishes to
edit. The window in Figure 3, the Locator Window,
always displays the complete Modechart specification.
The user selects the portion of the specification he
wishes to work on by moving and resizing the bold rect-
angle until it covers the desired area. The portion
selected is presented for editing in the Work Window,
shown in Figure 4. Initial children of serial modes are
outlined with thicker lines than other modes. In
Figure 4, CPU1_idle is an initial mode.

MT supports a direct-manipulation style user inter-
face for creating, moving, and deleting modes and mode
transitions and for resizing modes. It has several
advanced features, such as zooming, Undo, and Redo
operations; an object finder, which centers the display
on a named object; and a program that improves the lay-
out of the specifications. The results of applying the lay-
out program to the specifications for mode CPU1 appear
in the Work Window shown in Figure 4.

2The T_has_cpt modes exist to avoid a zero cycle, a loop in which an
infinite number of transitions are required to be taken at the same time
instant. Zero cycles are illegal in Modechart specifications.

Locator : MISSILE

mtng Sysiem (Paralie)

FIGURE 3.
displayed in the Work Window, shown in Figure 4.

3.3 Static consistency and completeness checking

The purpose of static consistency and completeness
checking is to detect possible errors in the specifications
prior to simulation and verification. Unlike the simulator
and the verifier which deal with the run-time behavior
implied by the specifications, MT’s Consistency and Com-
pleteness Checker performs a static analysis. Using syntac-
tic information only, the Checker searches the
specifications for unreachable modes, sink modes (modes
from which there is no exit), and modes with self-transi-
tions. It also looks for statically nondeterministic transi-
tions>. Although the Modechart semantics permit some of
these anomalies (e.g., nondeterministic transitions and sink
modes), the Checker notifies users of their existence to
make sure they are intentional and not errors.

3If the system is in serial mode M and an event causes the system to exit
from one of M’s children, a statically nondeterministic transition exists if
there exist transitions to any one of two other modes, both of which are
also M’s children, that share the same trigger. This is a static check,
because the transition definitions are compared textually. The verifier, dis-
cussed later, provides a test of dynamic nondeterminism, in which two
transitions from the same mode are both eligible to be taken at the same
time because (perhaps different) events happened to occur simultaneously.

15

MT’s Locator Window. Users move and resize the bold rectangle to determine the area

3.4 Simulation

Once a chart has been entered and checked for consis-
tency, the tool’s simulator can be invoked [23]. To run the
simulator, the user first assembles a file of options (or uses a
default set) that tells the simulation tool how nondetermin-
istic decisions are to be made. These decisions include
choosing a transition to take when more than one is
enabled, scheduling the next time a randomly-occurring
external event is to occur, and fixing the execution time of
an action between given bounds. For example, although
external events may occur any time after a specified delay
(also referred to as a minimum separation), the user may
instruct the simulator to model these events at specific
times, at random times with given statistical distributions,
or never. The user also specifies how long he wishes the
simulation to run, the set of objects (e.g., modes) to be dis-
played, and a set of breakpoints. The simulator uses break-
points much like a symbolic debugger. When a breakpoint
occurs, the simulator halts to allow the user to inspect or to
alter the computation. Breakpoints may occur at specified
times or time multiples or they may coincide with events,
e.g., whenever a particular mode is entered.

FIGURE 4.
Window in Figure 3.

The simulator produces a bar graph, as shown in
Figure 5. Each bar represents the behavior of a single
Modechart object over time, where time begins at zero and
is displayed horizontally from left to right. For modes, a
thick line indicates that the mode is active at a particular
time; a thin line indicates that it is not active. The simulator
can also display the temporal behavior of external events,
actions, transitions, and boolean variables.

Using the specification shown in Figure 3, Figure 5
shows the simulation output for the scheduler and three of
its five application tasks. The display has been ordered so
that the modes relevant to each task are grouped together
for easy reference. The task groups are ordered in decreas-
ing priority. Not all modes of the specification are dis-
played.

From this display we can observe the following behav-
ior, which was expected and gives us some preliminary
confidence in our specification:

* Modes CPU1, MTS, UT, and MFSP are always active.
This is expected, because each is a child of the root

16

MT’s Work Window, showing that portion of the specification designated by the Locator

mode, which is parallel. Their graphs are displayed in
the simulation not because their behavior is interesting --
the behavior of their children is what we care about --
but because the solid lines serve as convenient visual
delimiters for the scheduler and task groups.

Each task is awarded the CPU only after it enters its wait
state, and never before. No task is awarded the CPU
unless it is in the wait state.

No two tasks are awarded the CPU simultaneously; no
two tasks are in their work states simultaneously.

No task is in its work mode after a higher-priority task
enters its wait mode.

MTS, the highest priority task, never has to wait for the
CPU longer than the tick necessary for the CPU to
switch to a new task. Other lower priority tasks some-
times must wait a long time in their wait states before
they are awarded the CPU and can enter their work
states. For example, task UT requested the CPU at time
82, but did not get it until time 97 because higher-prior-
ity tasks (not shown) were using it.

* We observe task pre-emption occurring at time 20. UT,
the fourth-highest priority task, was awarded the CPU at
time 16. However, at time 20, a higher-priority task (not
shown) requested it, and UT was preempted. Task UT
did not receive the CPU again until time 48; in the mean-
time, the CPU was busy servicing other tasks. Task UT
retreated to mode UT.wait for this interval waiting for its
next turn with the CPU.

¢ All of the tasks appear to receive the CPU long enough
to complete their work, except for MFSP.

All of these observations, and many more, concern
aspects of the model’s behavior that we hope are true and
invariant. Although we cannot conclude that the specifica-
tion is correct with respect to these invariants, seeing them
satisfied in this execution path does increase our confidence
in the specification. In this example, the simulation also
suggests the possibility of incorrect behavior.

In particular, task MFSP appears to be subject to starva-
tion, since it does not appear to have the CPU for enough
uninterrupted time to finish its work. In the interval of this
simulation, it enters the work mode at time 8 (having

requested the CPU before any other task) but is soon pre-
empted and forced to retreat back to its wait mode. For the
rest of the shown duration, MFSP never resumes execution
for more than a single time unit.

Finally, we can observe the following, which was neither
expected nor unexpected. That is, after an initial period in
which no task requests the CPU, the CPU is never idle (at
least during the simulation interval). In Figure 3, the ticks
on the CPU1_idle mode line indicate zero-duration activa-
tions of the mode. These occur when the task that was run-
ning relinquishes the CPU to another task.

In general, simulation is to specification what testing is
to software. Because it only exercises one execution path
per run, the simulator can only show the presence of errors
and not their absence. In spite of this limitation, the simula-
tor has proven valuable, because it provides a visual repre-
sentation of an execution path. With this approach,
unexpected behavior is quickly identified. The errors
detected can be used to help identify invariants about the
specification (namely, that the error state does not occur)
that the user can later try to confirm with the verifier.

QIM

(Disptay v) (Options v)

modse chart name: @/MT,nrl.rapon/vS.Z graph name: *=

Density(plixei/time) S N Dso
Scale(timeick 10 100D
Runningstep 11 10

D OO
0200
e

o0soo
Ve I}

80 kad

100 110 120 130 140

end time: 200

select time: 222

wE

B3,

e

[HODED
ARt

[HODEY
NTS.uait

i3

o

al

FIGURE 5. The MT Simulator window.

17

3.5 Verification

The MT verifier [16][18] either determines the validity
of a given predicate or answers specific queries about the
specifications, such as whether selected modes are reach-
able. To perform these tasks, the verifier derives a computa-
tion graph from the Modechart specifications. The nodes of
the graph represent all possible states of the system; the
edges are labeled with events that can cause state changes.

Figure 6 shows and explains the verifier’s main work
window. The Command and Write buttons access menus
that allow the user to respectively perform analysis on and
report information about the specification. We illustrate
some of the features by asking questions about the sched-

X odechart Veriter R |

uler example raised during simulation.

The commands are presented in the form of RTL for-
mula templates [15] with blanks in strategic places. The
user chooses specification objects, constants, and relations
to fill in the blanks. When the formula is complete, “Evalu-
ate” will return true or false. The user can also evaluate an
incomplete formula by asking the verifier to fill in the inte-
ger constants, if any, which will cause the formula to be
true; this is called “Calculate Offsets”.

Because of restrictions in the current version of the veri-
fier tool, the modechart used to demonstrate the verifier is
topologically different (but semantically equivalent) to the
one presented in Figure 3.1. See [5] for more details.

(File v) (Graph v) ((Command v) ((Write v)

Complete Graph:
Root mode: scheduler

Modes:

Modechart: (€] hics/Modeling/MC/vS

Predicates:

___Verbose @
VAIDTime stamp@

Cput.DLPawarded
Cpul.MFSPawarded
Cpul.MTSawarded

IgKmnli

DLP.sync_suspend

I=-CI 120

Mode selected:
Actions:

[={Ts]]

-

MFSP.sync_suspend C
MTS.sync_suspend

Predicate selected:

Point#: 74

€

Action selected:

Loy file:

(e=[2] (@00

Writing zero cycle information
The graph contains no zero cycles

[-CeL D2
oo

FIGURE 6.

The MT verifier's main work window. Area a shows information about the Modechart

specifications and its computation graph. In particular, it shows that the graph is valid (has passed
internal consistency checks). Areas b-d list objects In the specification (modes, state variables, and
actions, respectively). The user can select from these lists to build verification queries. (This example
contains no actions.) Area e is for selecting points In the computation graph about which to construct
queries. The buttons labelled with relation signs allow the user to step through valid points numbers of
the graph. Area f controls logging to a file, and g Is the output window.

18

Does MTS, the highest-priority task, get the CPU
whenever it wants it? In our model, MTS asks for the CPU
30 time units after it exits its initial state. The verifier’s sep-
aration query determines the minimum or maximum possi-
ble time separation between two consecutive occurrences of
a particular event over all computations. Figure 7 illustrates
the separator query which shows that MTS does get the
CPU whenever it requests it. Minimum or maximum is
selected by switching the relation symbol using the “T{”
button. Here, we’ve shown that the time between subse-
quent entries into mode MTS.work is at most 41 time units;
the “41” was supplied by the tool in response to our “Calcu-
late Offset” request. Since MTS.work completes in 8 time
units, 2 time units are devoted to task switching, and the
relation is “greater than” as opposed to “greater than or
equal 0”, 41 (30 + 8 + 2 + 1) is what we expect.

Does task MFSP starve? In simulation, MFSP appeared
to starve because we never saw an activation interval for
MFSP.work lasting the requisite time to complete its work.

The verifier’s elapsed time query can tell us the minimum
and maximum activation interval for a mode, over all com-
putations. Figure 8 shows that the least amount of time that
MFSP.work is active is one time unit, and that the most it is
active is seven time units. Since a task requires eight time
units to complete its work, this confirms that MFSP starves
under all computation trajectories.

Are two tasks’ work modes active simultaneously?
The verifier’s reachability query allows the user to describe
states in the computation and reports how many points in
the computation graph satisfy that description. States are
described by specifying which modes are and are not active
in that state, and which state predicates are true and which
are false. Figure 9 illustrates a reachability query for states
in which both MTS.work and PL.work are active. The veri-
fier reports that there are zero such points in the graph, as
expected. Reachability queries about all pairs of work
modes can confirm that no two tasks share the CPU simul-
taneously for a non-zero time interval.

Separation

Mode selected: MTS.work

\Vli: [@ ™ |->MTS.work Y+ 41

Action selected: ?72?

, i+1)]

> @(—>MTS.work

Result: True

(Calculate Offset) (Evaluate)

(Dismiss)("Clear & Dismiss)

FIGURE 7. The MT verifier’s separation query.

Elapsed Time

Result: True

Mode selected: MFSP.work

Min time:

1 Max time: 7

(Dismiss)(Clear & Dismiss)

FIGURE 8. The MT verifier’s elapsed time query.

19

Xl Reachability

PLworlg

E] ¢ acthbn nctstarted vk

(Append)(Change)¢ Saivts }

Points must include these modes:
() MTS.work g
[() PLwork] j

(Append) (Change) Dairin)
Points must include these predicates:

Result:

Mode selected: PL.work

Predicate selected:

of pts ingraph:0

(append)((Change)1 Daivts }
Points must exclude these modes:

]
I

G ACtion aetstarked vob

(Append) (Change)): Dshix)

Points must exclude these predicates:

]
I

of unexplored pts: 0

(Dismiss) (Clear & Dismiss)

FIGURE 9. The MT verifier’s reachability query. The four components are for specifying, respectively, a
list of active modes, a list of inactive modes, a list of true predicates, and a list of false predicates. The
query returns the number of points in the computation matching the parameters. Objects not mentioned
in the lists assume a “don’t care” status in the query.

Does every work state follow an awarding of the
CPU? The verifier’s all-universal query, which is shown in
Figure 10, is designed to test assertions about events that
should be strongly synchronized with each other. It returns
the minimum separation between corresponding occur-
rences of pairs of events. The query shown verifies that the
i entry into DLP’s work state always follows the i entry
into the scheduler mode that awards the CPU to DLP, per-
haps by as little as zero time units. The fact that there is an
offset (here, zero) for which this lockstep formula holds
means that the DLP task never goes to work without per-

20

mission.

Other queries can verify this safety property for the other
tasks. This query can operate on a list of related event pairs,
and evaluates the conjunction of the individual separation
formulas.

Is a task ever given the CPU without requesting it?
Substituting the appropriate wait and awarded_cpu modes
in the all-universal query in Figure 10 would show whether
a task is awarded the CPU only in response to a request for
1t.

All Universal

Mode selected: PL.work

Vi: [a¢ —>DLP_awargd [»],D+ ,

Action selected:
(Append) ((Change)(Delete)

<= @(—>DLP.work

,) &

|—>DLP_awarded_cp] [0

[~>DLP.work

Il

:
|

Result: True

(Calculate Offset) (Evaluate)

(Dismiss) (Clear & Dismiss)

FIGURE 10. The MT verifier’s all-universal query.

4. Conclusions

MT has several important attributes.

e Unlike other real-time tools, MT provides a comprehen-
sive, unified approach to specifying real-time systems
and analyzing their behavior via simulation and mechan-
ical verification.

¢ The MT tools have a common formal semantics defined
by Real-Time Logic.

¢ MT is one of the few toolsets in existence that produces
graphical specifications that are both easy to understand
and formal. The specifications form the basis for formal
analysis.

Technology for specifications that support automated
analysis of real-time systems is in its infancy. If it is to grow
beyond this stage, progress must be made in the following
areas:

e Verification based on model-checking suffers from a
state explosion problem. It is easy to create a specifica-
tion for which verification is not practical on even the
largest machines. Ways must be found to structure speci-
fications into subsets, so that the properties we wish to
verify about each subset are provably independent of the
other subsets, except in very limited and well-managed
ways. There are also ways to shrink the computation
graph by exploiting information about the specification
(particularly where it describes, or is intended to

21

describe, deterministic behavior). New approaches are

needed.

e There are several user interface issues that must be
addressed. Are there better ways to present the mode-
charts to the user? What is the best way to provide repli-
cation (copy-and-paste) facilities so that the user can
quickly build a large modechart from almost-alike com-
ponents? Can we distance the user more from the com-
putation graph and less from the Modechart specification
during verification? How can the verifier help the user
determine why a query failed, as opposed to just report-
ing that it did?

An interim report is in progress that contains a large
Modechart specification for the missile example [6]. The
report presents the specification at a high level and concen-
trates on the design and modeling decisions that were made
to achieve a specification amenable to the planned analysis.
These decisions were almost always ones that helped us to
manage complexity, and they are of the type that go unrec-
ognized until a formal method is used to specify something
other than a small example.

A second interim report presenting a precise formal
model of the application is also in progress. This report will
provide detailed information so that others can apply their
own specification, verification, and other formal methods
technology to the same problem. The objective is to provide
an authentic example of a real-time problem so that differ-
ent formal methods may be compared.

Acknowledgments

The authors acknowledge the long hours and dedicated
work of the many who helped develop the toolset. A. Bull,
C. Gasarch, and M. Pérez of NRL made substantial contri-
butions to the toolset’s facilities for creating and editing
specifications and to the design of the graphical user inter-
face. Doug Stuart of the University of Texas built the
underlying verifier and modified it to work with the graphi-
cal user interface. Alex Ho of UT designed and imple-
mented both the verifier’s user interface and the user
interface for the Modechart simulator. Al Mok of UT pro-
posed the barchart display used by the simulator.
Bibliography
[1] T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, D.
L. Parnas, and J. E. Shore, “Software Requirements for the
A-TE Aircraft,” NRL Rep. 9194, Naval Research Lab.,
Wash., DC, 1992.

G. Barrett, “Formal Methods Applied to a Floating Point
Number System,” IEEE Trans. Softw. Eng. SE-15, 1989,
611-621.

B. Boehm, Software Engineering Economics, Englewood
Cliffs, NJ, Prentice-Hall, 1981.

P. C. Clements, C. L. Heitmeyer, B. G. Labaw, A. K. Mok,
“Applying Formal Methods to An Embedded Real-Time
Avionics System,” Proc., IEEE Real-Time Applications
Workshop, New York, NY, May 11-12, 1993.

P. C. Clements, C. L. Heitmeyer, B. G. Labaw, A. T. Rose,
“A Toolset for Specifying and Analyzing Real-Time Sys-
tems: Overview and Example,” NRL Rep. 7405, Naval
Research Lab., Wash., DC, 1993.

P. C. Clements, A. Bull, and B. Labaw, “Modeling the
HARM Low-Cost Seeker System with Modechart,” NRL
report (in preparation).

D. Craigen, S. Gerhart, and T. Ralston, “An International
Survey of Industrial Applications of Formal Methods,”
NRL Report 9581/9582, Naval Research Lab., Wash., DC,
1993.

G. Dinolt et al., “Multinet Gateway---Towards A1 Certifica-
tion,” Proc., IEEE Symp. on Security and Privacy, 1984.

R. Fairley, Software Engineering Concepts, New York, NY,
McGraw-Hill, 1985.

IEEE Software, Sep. 1990, Special Issue on Formal Meth-
ods.

[2]

B3]

(4]

[5]

(6]

7

(8]

[91

(10]

22

[11]

(12}

(13]

[14]

{15]

[16]

(17

[18]

[19]

(20}

{21]

{22)

(23]

D. Harel et al., “Statemate: A Working Environment for the
Development of Complex Reactive Systems,” IEEE Trans.
Softw. Eng. SE-16, 4, Apr. 1990.

C. L. Heitmeyer, P. C. Clements, B. G. Labaw, A. K. Mok,
“Engineering CASE Tools to Support Formal Methods for
Real-Time Software Development,” Proc., CASE ‘92 Fifth
Intern. Workshop on Computer-Aided Softw. Eng., Montreal,
Canada, July 6-10, 1992.

C. L. Heitmeyer and B. G. Labaw, “Requirements Specifica-
tion of Hard Real-Time Systems: Experience with a Lan-
guage and a Verifier,” in Foundations of Real-Time
Computing: Formal Specifications and Methods, A. van Til-
borg and G. Koob, Eds., Kluwer Academic Publishers, Nor-
well, MA, 1991, 291-313.

Heninger, K.L., “Specifying Software Requirements for
Complex Systems: New Techniques and their Application,”
IEEE Transactions on Software Engineering, vol. SE-6, no.
1, pp. 213, January 1980.

F. Jahanian, R. S. Lee, and A. K. Mok, “Semantics of Mode-
chart in Real Time Logic,” Proc., 21st Hawaii International
Conference on System Sciences, January 1988.

F. Jahanian and D. A. Stuart, “A Method for Verifying Prop-
erties of Modechart Specifications,” Proc., Real-Time Sys-
tems Symposium, Orlando, FL, Dec. 1988.

F. Jahanian and A. K. Mok, “Safety Analysis of Timing
Properties in Real-Time Systems,” IEEE Trans. Softw. Eng.
SE-12, 9, Sep. 1986, 890-904.

F. Jahanian and D.A. Stuart, “A Method for Verifying Prop-
erties of Modechart Specifications,” Proc., Real-Time Sys-
tems Symposium, Huntsville, AL, Dec., 1988.

N. Leveson et al., “Experiences Using Statecharts for a Sys-
tem Requirements Specification,” Proc., Intern. Workshop
on Software Specif. and Design, Como, Italy, Oct. 25-26,
1991, pp. 31-41.

D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Communications of the ACM, vol.
15, no. 12, pp. 1053-1058, 1972.

J. M. Spivey, Understanding Z: A Specification Language
and its Formal Semantics, Cambridge Univ. Press, 1988.

D. A. Stuart, “Implementing a Verifier for Real-Time Sys-
tems,” Proc., Real-Time Systems Symposium, Orlando, FL,
Dec. 1990, 62-71.

D. A. Stuart and P. C. Clements, “Clairvoyance, Capricious
Timing Faults, Causality, and Real-Time Specifications,”
Proc., Real-Time Systems Symposium, San Antonio, TX,
Dec. 3-6, 1991.

